Role of the extracellular cAMP-adenosine pathway in renal physiology.
نویسندگان
چکیده
Adenosine exerts physiologically significant receptor-mediated effects on renal function. For example, adenosine participates in the regulation of preglomerular and postglomerular vascular resistances, glomerular filtration rate, renin release, epithelial transport, intrarenal inflammation, and growth of mesangial and vascular smooth muscle cells. It is important, therefore, to understand the mechanisms that generate extracellular adenosine within the kidney. In addition to three "classic" pathways of adenosine biosynthesis, contemporary studies are revealing a novel mechanism for renal adenosine production termed the "extracellular cAMP-adenosine pathway." The extracellular cAMP-adenosine pathway is defined as the egress of cAMP from cells during activation of adenylyl cyclase, followed by the extracellular conversion of cAMP to adenosine by the serial actions of ecto-phosphodiesterase and ecto-5'-nucleotidase. This mechanism of extracellular adenosine production may provide hormonal control of adenosine levels in the cell-surface biophase in which adenosine receptors reside. Tight coupling of the site of adenosine production to the site of adenosine receptors would permit a low-capacity mechanism of adenosine biosynthesis to have a large impact on adenosine receptor activation. The purposes of this review are to summarize the physiological roles of adenosine in the kidney; to describe the classic pathways of renal adenosine biosynthesis; to review the evidence for the existence of the extracellular cAMP-adenosine pathway; and to describe possible physiological roles of the extracellular cAMP-adenosine pathway, with particular emphasis on the kidney.
منابع مشابه
Extracellular 2',3'-cAMP-adenosine pathway in proximal tubular, thick ascending limb, and collecting duct epithelial cells.
In a previous study, we demonstrated that human proximal tubular epithelial cells obtained from a commercial source metabolized extracellular 2',3'-cAMP to 2'-AMP and 3'-AMP and extracellular 2'-AMP and 3'-AMP to adenosine (the extracellular 2',3'-cAMP-adenosine pathway; extracellular 2',3'-cAMP → 2'-AMP + 3'-AMP → adenosine). The purpose of this study was to investigate the metabolism of extra...
متن کاملExtracellular cAMP-adenosine pathways in the mouse kidney.
The renal extracellular 2',3'-cAMP-adenosine and 3',5'-cAMP-adenosine pathways (extracellular cAMPs→AMPs→adenosine) may contribute to renal adenosine production. Because mouse kidneys provide opportunities to investigate renal adenosine production in genetically modified kidneys, it is important to determine whether mouse kidneys express these cAMP-adenosine pathways. We administered (renal art...
متن کاملThe 2',3'-cAMP-adenosine pathway.
Our recent studies employing HPLC-tandem mass spectrometry to analyze venous perfusate from isolated, perfused kidneys demonstrate that intact kidneys produce and release into the extracellular compartment 2',3'-cAMP, a positional isomer of the second messenger 3',5'-cAMP. To our knowledge, this represents the first detection of 2',3'-cAMP in any cell/tissue/organ/organism. Nuclear magnetic res...
متن کاملcAMP-Epac Pathway Stimulation Modulate Connexin-43 and MicroRNA-21 Expression in Glioma Cells
Introduction: Malignant astrocytic gliomas are the most common and lethal brain malignancies due to their refractory to the current therapies. Nowadays, molecular targeted therapy has attracted great attention in treatment of glioma. Connexin 43 (Cx43) and micro ribonucleic acid- 21(miR-21) are among molecules that are involved in glioma development and progression. These molecules showed...
متن کاملP138: Are Depression and Anxiety Affected by Adenosine A2A Receptors?
Adenosine acts as neuromodulator in the brain, which its involvement in a wide range of brain processes and diseases has been studied, such as epilepsy, sleep, anxiety, panic disorder, Alzheimer’s disease, Parkinson’s disease and schizophrenia. Adenosine receptors have been detected: A1R, A2AR (A2AR), A2BR, and A3R. A1R and A2R inhibit cAMP production, while A2AR and A2BR stimulate cAMP product...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 281 4 شماره
صفحات -
تاریخ انتشار 2001